
MicroEJ
SNI-GT-1.2

Safe Native Interface for GreenThread Context
Profile Specification

ESR0012

Reference: ESR-SPE-0012-SNI-GT
Version: 1.2
Rev: I

Copyright of The Software

DEFINITIONS

"ESR" means the Specification, including any modifications and upgrades, where these terms have
been stated or referred to, and made available to You by MicroEJ, including without limitation,
texts, drawing, codes,and examples.

"MicroEJ" means MicroEJ S.A. , operating under the brand name MicroEJ®, Société anonyme à
conseil de surveillance et directoire which main offices are at Nantes, 11 rue du chemin rouge,
44373 Nantes, France, Registered under number 452870579, in France in accordance with the
French law.

"You" means the legal entity or entities represented by the individual executing this Agreement.

READ ONLY RIGHTS

Subject to the terms and conditions contained herein, MicroEJ grants to You a non-exclusive, non-
transferable, worldwide, and royalty-free license to view and read the ESR solely for purposes of
Your internal evaluation. As a condition of the license grant, You shall not copy, modify, create
derivative works of, publicly display, publicly perform, implement, disclose, distribute, or
otherwise use the ESR, including without limitation, using the ESR to develop Software or Tool,
similar or compatible with the software defined by the Specification.

INTELLECTUAL PROPERTY

The ESR is proprietary, protected under copyright law and patents. You have no right at any time
to disclose, directly or indirectly, such material and/or information relating to the ESR, to any third
party without MicroEJ's prior written approval.

GENERAL TERMS

THE ESR IS PROVIDED "AS IS", WITHOUT WARRANTIES OF ANY KIND, EITHER
EXPRESS OR IMPLIED.

THE READING OF THE ESR AND ALL CONSEQUENCES ARISING THEREOF IS YOUR
SOLE RESPONSIBILITY. MICROEJ SHALL NOT BE LIABLE TO YOU FOR ANY LOSS OR
DAMAGE CAUSED BY, ARISING FROM, DIRECTLY OR INDIRECTLY, OR IN
CONNECTION WITH THE ESR.

MISCELLANEOUS

This Agreement shall be governed by, and interpreted in accordance with French Law. In no event
shall this Agreement be construed against the drafter.

This Agreement contains the entire understanding between the parties concerning its subject matter
and supersedes any other agreement or understanding, whether written or oral, which may exist or
have existed between the parties on the subject matter hereof.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION.

MICROEJ MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN ANY ESR PUBLICATION AT ANY TIME.

Trademarks
Java™ is Sun Microsystems' trademark for a technology for developing application software and
deploying it in cross-platform, networked environments. When it is used in this documentation
without adding the ™ symbol, it includes implementations of the technology by companies other
than Sun.

Java™,all Java-based marks and all related logos are trademarks or registered trademarks of Sun
Microsystems Inc, in the United States and other Countries.

Information in this document is the property of MicroEJ. Without written permission from
MicroEJ, copying or sending parts of the document or the entire document by any means to third
parties is not permitted including any means such as electronic communication, photocopies,
mechanical reproduction systems or by any means dealing with information processing.

Contents

1 Preface to SNI-GT 1.2 Profile, ESR00121
1.1 Who Should Use this Specification..1

1.2 How This Specification is Organized...1

1.3 Comments..1

1.4 Related literature..1

1.5 Document Conventions...1

1.6 Definition..1
1.6.1 native..1
1.6.2 static ..2

1.7 Implementation Notes..2

2 Introduction..2
2.1 Architecture..2

2.1.1 Purpose...2
2.1.2 Green Threads Context...2

2.2 First Example...3

2.3 Java And Native Separation..4

2.4 Starting the “Java world” ...4
2.4.1 Start-up...4
2.4.2 Without RTOS..4

3 Java World to C World..5
3.1 C Function Call From Java world ..5

3.2 Java Types And C Types..5
3.2.1 Base Types..5
3.2.2 Java Array...6

3.3 Naming Convention...6

3.4 Parameters Constraints...7

3.5 Mixing Java and C execution sequence...7
3.5.1 Java natives: calling C from Java...7
3.5.2 Synchronization between Java threads and C RTOS tasks...8

4 Java Virtual Machine Startup..9
5 SNI-GT APIs..10

5.1 C Header File..10

5.2 Java API..14

Tables
Table 3-1: Java types to C types..5
Table 3-2: SNI-GT Java types descriptors in arguments..6

Illustrations
Illustration 2-1: A green threads architecture example..3
Illustration 2-2: Java to C calling sequence...4
Illustration 3-1: Green threads and native stacks...8
Illustration 3-2: A green threads Java virtual machine RTOS task activity..8
Illustration 3-3: Green threads and RTOS task synchronization..9
Illustration 4-1: Example of Java virtual machine startup code in C...10

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

1 PREFACE TO SNI-GT 1.2 PROFILE, ESR0012

This document defines the SNI-GT 1.2 profile, targeting Java 2 Platforms that are “green threads”
based platforms.

1.1 Who Should Use this Specification
This specification targets the following audiences:

• Individuals who want to build an implementation that complies to the SNI-GT profile
specification;

• Application developers who want to design a software application using SNI-GT in the
context of a “green threads” Java virtual machine.

1.2 How This Specification is Organized
This specification is organized as follow:

• Introduction is a short chapter explaining what SNI-GT is, why it has been designed, and
its main assets.

• Specification describes the concepts required to understand how to write an application
using SNI-GT.

• SNI-GT API Documentation lists the SNI-GT APIs as javadoc.

1.3 Comments
Your comments about SNI-GT are welcome. Please send them by electronic mail to the following
address: contact@microej.com, with SNI-GT in your subject line.

1.4 Related literature
[B-ON] Beyond: ESR001, http://www.microej.com

1.5 Document Conventions
In this document, references to methods of a Java class are written as
ClassName.methodName(args). This applies to both static and instance methods. Where the
method is static this will be made clear in the accompanying text.

1.6 Definition

1.6.1 native

Java allows to write parts of the application in languages other than in the Java syntax. Such parts
are said to be “native” parts. Therefore the Java programmer uses the keyword native to refer to
such non-Java implementations.

1

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

1.6.2 static

Java is an Object Oriented language. An application is made of objects that communicate using
message sends: an S object sends a message to an R object called the receiver. The message is
implemented either in Java by a Java method1, or in another language if the code is implemented
using a Java native method.

Some methods are global to the application and do not refer to a specific object. They are said to
be static: they do not rely on a receiver. Therefore the Java programmer uses the keyword static
to refer to such global methods.

1.7 Implementation Notes
The SNI-GT specification does not include any implementation details. SNI-GT implementors are
free to use whatever techniques they deem appropriate to implement the specification, with (or
without) collaboration of any Java virtual machine provider. SNI-GT experts have taken great care
not to mention any special Java virtual machines, nor any of their special features, in order to
encourage fair competing implementations.

2 INTRODUCTION

2.1 Architecture

2.1.1 Purpose

The Safe Native Interface for GreenThread Context, named SNI-GT, is intended for implementing
native Java methods in C language.

SNI-GT allows to:

• call a C function from a Java method.

• access an Immortal array in a C function (see [B-ON] specification to learn about immortal
objects).

SNI-GT does not allow to:

• access or create a Java object in a C function.

• access Java static variables in a C function.

• call Java methods from a C function.

2.1.2 Green Threads Context

Green threads are threads that are internally managed by the Java virtual machine instead of being
natively managed by the underlying Real-Time Operating System (RTOS), if any provided. A
green threads Java virtual machine defines a multi-threaded environment without relying on any
native RTOS capabilities.

Therefore, the whole Java world runs in one single RTOS task, within which the Java virtual
machine re-creates a layer of (green) threads. One immediate advantage is that the Java-world CPU
consumption is fully controlled by the RTOS task it is running in, allowing embedded engineers to

1 The term “method” is used in Java whereas “function” is used in C.

2

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

easily arbitrate between the different parts of their application. In particular in an open-to-third-
parties framework, the maximum CPU time given to the Java world is fully under control at no
risk, whatever the number and/or the activities of the Java green threads.

Illustration 2-1: A green threads architecture example

Illustration 2-1 shows 4 RTOS tasks, with the first one embedding 3 green threads. When the Task
1 is scheduled by the RTOS, the Java virtual machine executes. Therefore the Java virtual machine
schedules the green threads.

2.2 First Example
This first example shows how to declare and implement a Java native method using SNI-GT.
First the method has to be declared native in Java: this states that the method is written in
another language. Then, the implementation of the method is written in C language.

package examples;
public class Hello{

 public static void main(String[] args){
 printHelloNbTimes(args.length);
 }

 public static native void printHelloNbTimes(int times);

}

The C source file declares a function Java_examples_Hello_printHelloNbTimes. It prints
the message Hello world! several times by invoking the printf() function.

#include <sni.h>
#include <stdio.h>
void Java_examples_Hello_printHelloNbTimes(jint times){
 while (--times >= 0){
 printf("Hello world!\n");
 }
}

3

G
T
0
1

RTOS
Task 1

RTOS
Task 2

RTOS
Task 4

RTOS
Task 3

G
T
2

G
T
1

G
T
3

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

2.3 Java And Native Separation
SNI-GT defines how to cross the barrier between Java world and native world:

• Call a C function from Java.

• Pass parameters to the C function.

• Return a value from the C world to the Java world.

• Manipulate (read & write) shared memory both in Java and C : the immortal space.

Illustration 2-2: Java to C calling sequence

Illustration 2-2 shows both Java and C code accesses to shared objects in the immortal space,
while also accessing their respective memory.

2.4 Starting the “Java world”

2.4.1 Start-up

SNI-GT defines the Java virtual machine start-up process: the Java is under the control of the C
world that initiated its launch as one RTOS task.

2.4.2 Without RTOS

When no RTOS is in use, the main function is viewed as the single RTOS task. It uses the whole
CPU budget, except the time used by interrupts. The system is viewed throughout this
specification has having just one RTOS task, which runs the Java world.

4

Java world C world

Java memory

Arrays of basetypes

C memory

C struct

Java
object
access

Immortal
object
access

Immortal
object
access

struct
access

Java objects

Immortal
space

Java
 methods

C
 methods

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

3 JAVA WORLD TO C WORLD

3.1 C Function Call From Java world
The SNI-GT specification allows the invocation of methods from Java to C: these methods must be
static native methods, and the parameters must be base types or immortal array of base types
(cf [B-ON]). These native methods are used in Java as standard Java methods.

Example:

package example;
public class Foo{

 public void bar(){
 int times = 3;
 print(times);
 }

 public static native void print(int times);
}

#include <sni.h>
#include <stdio.h>

void Java_example_Foo_print(jint times){
 while (--times >= 0){
 printf("Hello world!\n");
 }
}

3.2 Java Types And C Types

3.2.1 Base Types

Types may have different representations depending on the language. The file sni.h defines the C
types that represent exactly the Java types.

Java Type Specification C type

void No returned type void

boolean unsigned 8 bits jboolean

byte signed 8 bits jbyte

char unsigned 16 bits jchar

short signed 16 bits jshort

int signed 32 bits jint

long signed 64 bits jlong

float IEEE 754 single precision 32 bits jfloat

double IEEE 754 double precision 64 bits jdouble

Table 3-1: Java types to C types

5

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

3.2.2 Java Array

The Java arrays (of base types) are represented in C functions as C arrays: the array is a pointer on
the first element of the array, all the elements in line within the memory.

Note that in C, strings are represented with C char2 array with a '\0' as last character. In Java,
strings are jchar array, not terminated by '\0'.

SNI-GT allows to get a Java array length in a C function.

int32_t SNI_getArrayLength(void* array);

3.3 Naming Convention
SNI-GT uses a naming convention to name-match the Java native method with its C counterpart
function.

The C function name is the concatenation of the following components:

• the prefix “Java_”.

• the package name of the class, each sub packages is separated with “_”.

• the separator “_”.

• the class name.

• the separator “_”.

• the method name.

If the method is overloaded by another method, native or not (the two methods have the same name
with different arguments), the function name must be followed by the arguments descriptor,
obtained with the following components (except if the method has no arguments):

• the separator “__” (two underscores)

• the name of each argument type, without separator, preceded by “_3“ if it is an array.

Table 3-2 gives the descriptors of the Java types for arguments.

Java type SNI-GT name

boolean Z

byte B

char C

short S

int I

long J

float F

double D

Table 3-2: SNI-GT Java types descriptors in arguments

The character underscore (“_”) is used as a separator in the name. If this character is used within
the Java name (either in package, class name or method name), it is replaced with “_1”. Because

2 sizeof(char) is 1 whereas sizeof(jchar) is 2

6

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

the Java names cannot start with a number, the characters “_1” cannot be confused with separator
character.

Examples of Java native methods and their counterpart C functions:

package example.sni.impl;

class Hello {

 public static native void nativ01(int i);
 public static native void nativ02(boolean b, int[] i);
 public static native void nativ_03();
 public static native void nativ04();
 public static native void nativ04(long l, double d);
 public static native void nativ04(int[] ia, int ib, char[] ca);
}

void Java_example_sni_impl_Hello_nativ01(jint i);
void Java_example_sni_impl_Hello_nativ02(jboolean b, jint* i);
void Java_example_sni_impl_Hello_nativ_103();
void Java_example_sni_impl_Hello_nativ04();
void Java_example_sni_impl_Hello_nativ04__JD(jlong l, jdouble d);
void Java_example_sni_impl_Hello_nativ04___3II_3C(jint* ia, jint ib,
jchar* ca);

3.4 Parameters Constraints
There are strong constraints on arguments given by Java methods to native functions:

• Only base types, array of base types are allowed in the parameters. No other objects can be
passed: the native functions cannot access Java objects field nor methods.

• When base type arrays are passed in parameters,

1. they must have only one dimension. No multi dimension array are allowed (int[][]
is forbidden for example).

2. they must be immortal arrays (see [B-ON 1.2]). Use the method
Immortals.setImmortal() to transform an array into an immortal array.

• Only base types are allowed as return type

This constraints are checked at link-time to ensure that they are respected, except for the immortal
arrays constraint (at link-time, compiler cannot figure out if an array reference is immortal or not).
If an array used in an argument is not immortal, a java.lang.IllegalArgumentException is
thrown at runtime when the native method is called.

3.5 Mixing Java and C execution sequence

3.5.1 Java natives: calling C from Java

When a Java native method executes, it executes its C counterpart function. This is done using the
CPU budget of the RTOS task that has embedded the Java world.

While the C function executes, no other Java methods executes: the Java world “waits” for the C
function to finish. Enough stack memory must be given to the C function in order for it to execute.

7

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

Illustration 3-1: Green threads and native stacks

Illustration 3-1 shows that green threads share the same native stack: the stack of the RTOS task
that is running the Java virtual machine.

Illustration 3-2: A green threads Java virtual machine RTOS
task activity

Illustration 3-2 shows a green threads Java virtual machine RTOS task. Green thread GT3 has
called a native method that executes in C. All Java activities is suspended until the C execution has
finished.

3.5.2 Synchronization between Java threads and C RTOS tasks

SNI-GT defines C functions that provide controls upon the green threads activities:

• int32_t SNI_suspendCurrentJavaThread(int64_t timeout): suspends the
execution of the Java thread that has initiated the current C call. This function does not block
the C execution. The suspension is effective only at the end of the native method call (when

8

G
T
0
1

RTOS
Task 1

RTOS
Task 2

RTOS
Task 3

G
T
2

G
T
1

G
T
3

C
RTOS
stack

Java RTOS Task

t
i

m
e

G
T
3

G
T
2

G
T
1

G
T
3

G
T
2

G
T
1

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

the C call returns). The green thread is suspended until either a RTOS task calls
SNI_resumeJavaThread or if the specified amount of milliseconds has elapsed.

• int32_t SNI_getCurrentJavaThreadID(void): permits to retrieve the ID of the
current Java thread within the C function (assuming it is a “native Java to C call”). This ID
must be given to the SNI_resumeJavaThread function in order to resume the green thread
execution.

• int32_t SNI_resumeJavaThread(int32_t id): resumes the green thread with given
ID. If the thread is not suspended, the resume stays pending.

t
i

m
e

Another C
RTOS Task

SNI_resumeJavaThread(3)

SNI_getCurrentJavaThreadID() : 3

SNI_suspendCurrentJavaThread(...)

G
T
3

G
T
2

G
T
1

321

The Java
RTOS Task

Illustration 3-3: Green threads and RTOS task synchronization

Illustration 3-3 shows a green thread (GT3) which has called a native method that executes in C.
The C code suspends it, after having provisioning its ID (e.g. 3). Another RTOS task may later
resume the Java green thread.

4 JAVA VIRTUAL MACHINE STARTUP

A green threads Java virtual machine needs first to be initialized, and then started. It is the
programmer responsibility to create an RTOS task and to start the Java virtual machine within this
task.

SNI-GT defines C functions to create a Java world, to start it and to free it:

• void* SNI_createVM(void): creates and initializes the Java virtual machine context.

• int32_t SNI_startVM(void*,int32_t,char**): starts the Java virtual machine. This
function returns when the Java application ends.

• int32_t SNI_getExitCode(void* vm): gets the Java application exit code, after
SNI_startVM has successfully returned. This is the value passed by the application to
System.exit() method.

9

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

• void SNI_destroyVM(void* vm): does nothing if the Java virtual machine is still
running. This function must be called in the RTOS task that created the Java virtual machine.

Illustration 4-1 shows a typical example of Java virtual machine startup code.

void javaWorldTask() {
 int32_t err;
 int32_t exitCode;
 void* myVM;

 myVM = SNI_createVM();
 if (myVM == NULL) {
 printf("Failed to create the Java world\n");
 }
 else {
 err = SNI_startVM(myVM, 0, NULL);
 if(err < 0) {
 printf("VM ends with error (%d)\n", err);
 }
 else {
 exitCode = SNI_getExitCode(myVM);
 printf("Java exit code = %d\n", exitCode);
 }
 SNI_destroyVM(myVM);
 }
}

Illustration 4-1: Example of Java virtual machine startup code in C

5 SNI-GT APIS

5.1 C Header File
The file sni.h contains all the types and functions definitions to interact with the Java world in
the C world.

10

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

/*
 * C header file
 * Copyright 2008-2014 IS2T. All rights reserved.
 * Modification and distribution is permitted under certain conditions.
 * IS2T PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
 */

/*
 * Header file for Safe Native Interface (SNI), version 1.2
 */
#ifndef SNI_H
#define SNI_H

#include <stdint.h>

#ifdef __cplusplus
extern "C" {

#endif

typedef int8_t jbyte; /* 8 bits */
typedef uint8_t jboolean; /* 8 bits */
typedef uint16_t jchar; /* 16 bits */
typedef int16_t jshort; /* 16 bits */
typedef int32_t jint; /* 32 bits */
typedef float jfloat; /* 32 bits */
typedef double jdouble; /* 64 bits */
typedef int64_t jlong; /* 64 bits */

//boolean values
#define JTRUE (1)
#define JFALSE (0)
#define JNULL (0)

#define SNI_OK (0) //function succeeded
#define SNI_ERROR (-1)//an error was detected
#define SNI_INTERRUPTED (1) //see SNI_suspendCurrentJavaThread

/*
 * Returns the length of a Java array
 */
int32_t SNI_getArrayLength(void* array);

/*
 * Creates and initializes a virtual machine.
 * This function MUST be called once before a call to
 * <code>SNI_startVM()</code>.
 *
 * Returns null if an error occurred, otherwise returns a
 * virtual machine instance.
 */
void* SNI_createVM(void);

/*
 * Starts the specified virtual machine and calls the
 * <code>main</code> method of the Java application with
 * the given String arguments.
 * This function returns when the Java application ends.
 *
 * The Java application ends when there are no more Java
 * threads to run or when the Java method
 * <code>System.exit(int)</code> is called.

11

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

 *
 * Returns 0 when the virtual machine ends normally or
 * a negative value when an error occurred .
 */
int32_t SNI_startVM(void* vm, int32_t argc, char** argv);

/*
 * Call this method after virtual machine execution
 * to get the Java application exit code.
 *
 * Returns the value given to the <code>System.exit(exitCode)</code>
 * or 0 if the Java application ended without calling
 * <code>System.exit(exitCode)</code>.
 */
int32_t SNI_getExitCode(void* vm);

/*
 * Releases all the virtual machine resources. This method
 * must be called after the end of the execution of
 * the virtual machine.
 */
void SNI_destroyVM(void* vm);

/*
 * Returns the ID of the current Java thread.
 * This function must be called within the virtual machine task.
 *
 * Returns <code>SNI_ERROR</code> if this function is not called
 * within the virtual machine task.
 */
int32_t SNI_getCurrentJavaThreadID(void);

/*
 * Causes the current Java thread to pause its Java execution after the
 * end of the current native method. This function is not blocking.
 * The current Java thread will resume its execution after the reception
 * of an external event or after <code>timeout</code> milliseconds.
 *
 * If a resume has been done on this thread before calling this
 * function, the thread is not paused.
 *
 * The result of calling this method several times during the same
 * native execution is unpredictable.
 *
 * Parameter <code>timeout</code> is the duration in milliseconds of the
 * pause. If <code>timeout</code> is zero, then time is not taken into
 * consideration and the thread simply waits until resumed.
 *
 * Returns <code>SNI_OK</code> if the request is accepted (i.e. the
 * thread will suspend its execution at the end of the current native).
 * Returns <code>SNI_ERROR</code> if the method is called outside of the
 * VM Task.
 * Returns <code>SNI_INTERRUPTED</code> if a resume is pending; the
 * current java thread will not suspend its execution.
 */
int32_t SNI_suspendCurrentJavaThread(int64_t timeout);

/*
 * Resume the given Java thread if it is suspended.
 * If the Java thread is not paused, this resume stays pending.
 * Next call of SNI_suspendCurrentJavaThread() will return immediately.
 *
 * Parameter <code>javaThreadID</code> is the ID of the Java thread to

12

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

 * resume.
 *
 * Returns <code>SNI_ERROR</code> if the given Java thread ID is
 * invalid, otherwise returns <code>SNI_OK</code>.
 */
int32_t SNI_resumeJavaThread(int32_t javaThreadID);

#ifdef __cplusplus
}

#endif

#endif /* SNI_H */

13

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

5.2 Java API

14

ej.sni

java.lang.Object

 ej.sni.PoolOfReusableResources

 ej.sni.PoolOfLimitedReusableResources

 ej.sni.PoolOfImmortalByteBuffers

public class PoolOfImmortalByteBuffers

extends PoolOfLimitedReusableResources

A pool of reusable immortal byte buffers.

Constructor Summary Page

PoolOfImmortalByteBuffers (int maxNbBuffers, int allocationSize)
Allocate a new pool of Immortals byte buffer resources

Error:
Refere

nce
source

not
found

Method Summary
protected

Object newResource ()
Allocate a new Immortal byte buffer resource

Methods inherited from class ej.sni.PoolOfLimitedReusableResources

getAllocationSize

Methods inherited from class ej.sni.PoolOfReusableResources

release , reserve

Constructor Detail

public PoolOfImmortalByteBuffers(int maxNbBuffers,
 int allocationSize)

Allocate a new pool of Immortals byte buffer resources

Parameters:
allocationSize - size of allocated resources (in bytes). 0 (i.e. unlimited) is not allowed.

Method Detail

protected Object newResource()

Allocate a new Immortal byte buffer resource

Overrides:
newResource in class PoolOfReusableResources

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

ej.sni

java.lang.Object

 ej.sni.PoolOfReusableResources

 ej.sni.PoolOfLimitedReusableResources

Direct Known Subclasses:

PoolOfImmortalByteBuffers

abstract public class PoolOfLimitedReusableResources

extends PoolOfReusableResources

A pool of resources where resources are allocated at creation time (no lazy allocation).

Constructor Summary Page

PoolOfLimitedReusableResources (int maxNbResources, int allocationSize)
Allocate a new pool of resources

Erro
r:

Refe
renc

e
sour
ce
not

foun
d

Method Summary
int getAllocationSize ()

Return size of allocated resources (in bytes).

Methods inherited from class ej.sni.PoolOfReusableResources

newResource , release , reserve

Constructor Detail

public PoolOfLimitedReusableResources(int maxNbResources,
 int allocationSize)

Allocate a new pool of resources

Parameters:
maxNbResources - 0 (i.e. unlimited) is not allowed.

allocationSize - size of allocated resources (in bytes). 0 (i.e. unlimited) is not allowed.

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

Method Detail

public int getAllocationSize()

Return size of allocated resources (in bytes).

Returns:
size of allocated resources (in bytes).

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

ej.sni

java.lang.Object

 ej.sni.PoolOfReusableResources

Direct Known Subclasses:

PoolOfLimitedReusableResources

abstract public class PoolOfReusableResources
extends Object

A pool of reusable resources. A buffer is reserved using reserve() and released using release(Object) . Pool
may have a maximum number of resources.

Constructor Summary Page

PoolOfReusableResources (int maxNbResources)
Allocate a new pool of resources

Erro
r:

Refe
renc

e
sour
ce
not

foun
d

Method Summary
protected
abstract

Object
newResource ()

Allocate a new resource
void release (Object buffer)

Object reserve ()
Reserve a buffer.

Constructor Detail

public PoolOfReusableResources(int maxNbResources)

Allocate a new pool of resources

Parameters:
maxNbResources - a strictly positive integer giving the maximum number of allocated resources, or 0 if an
unlimited number of resources is allowed

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

Method Detail

public synchronized Object reserve()

Reserve a buffer. In case all resources are in use and maxNbresources is not reached, a new buffer
is allocated. Otherwise this function blocks until a buffer is available

Returns:
an array

public synchronized void release(Object buffer)

protected abstract Object newResource()

Allocate a new resource

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

ej.sni

java.lang.Object

 ej.sni.SNI

public class SNI
extends Object

Constructor Summary Page

SNI () Erro
r:

Refe
renc

e
sour
ce
not

foun
d

Method Summary
static
void toCString (String javaString, byte[] cString)

Transforms a Java String into a C String.
The platform default encoding is used to transform Java characters into C characters.
The created C String is a NULL terminated String (ends with '\0').

static
String toJavaString (byte[] cString)

Transforms a C String into a Java String, using platform default encoding.

Constructor Detail

public SNI()

Method Detail

public static void toCString(String javaString,
 byte[] cString)

Transforms a Java String into a C String.
The platform default encoding is used to transform Java characters into C characters.
The created C String is a NULL terminated String (ends with '\0'). The cString array length must be at least
javaString.length()+1.

Parameters:
javaString - the Java String

cString - byte array which contains the C String.

ESR0012 - SNI-GT 1.2 (SAFE NATIVE INTERFACE FOR GREENTHREAD CONTEXT)

Throws:
IllegalArgumentException - if javaString or cString is null

ArrayIndexOutOfBoundsException - if cString is too small to contain the string

public static String toJavaString(byte[] cString)

Transforms a C String into a Java String, using platform default encoding. The C String must be NULL terminated.

Parameters:
cString - byte array which contains the C String

Returns:
a new Java String.

Throws:
IllegalArgumentException - if cString is null or its length is 1,
if cString is not NULL terminated.

	1 Preface to SNI-GT 1.2 Profile, ESR0012
	1.1 Who Should Use this Specification
	1.2 How This Specification is Organized
	1.3 Comments
	1.4 Related literature
	1.5 Document Conventions
	1.6 Definition
	1.6.1 native
	1.6.2 static

	1.7 Implementation Notes

	2 Introduction
	2.1 Architecture
	2.1.1 Purpose
	2.1.2 Green Threads Context

	2.2 First Example
	2.3 Java And Native Separation
	2.4 Starting the “Java world”
	2.4.1 Start-up
	2.4.2 Without RTOS

	3 Java World to C World
	3.1 C Function Call From Java world
	3.2 Java Types And C Types
	3.2.1 Base Types
	3.2.2 Java Array

	3.3 Naming Convention
	3.4 Parameters Constraints
	3.5 Mixing Java and C execution sequence
	3.5.1 Java natives: calling C from Java
	3.5.2 Synchronization between Java threads and C RTOS tasks

	4 Java Virtual Machine Startup
	5 SNI-GT APIs
	5.1 C Header File
	5.2 Java API

